

THE
BASIC
PROGRAMMERS
TOOLKIT

A
Collection of Programming Aids

for the Commodore PET

USER'S
GUIDE

Chuck Bond is the creator and main implementor of the BASIC
Programmer's Toolkit.

This user's guide was originally written by Gregory Yob.

BASIC Programmer's Toolkit is a trademark of Palo Alto ICs, a

division of Nestar Systems, Inc.

PET is a trademark of Commodore Business Machines, Inc

(c) Copyright 1979 by Palo Alto ICs

430 Sherman Avenue, Palo Alto, California 94306.

Revision 1 August 1979

What is it?

Your new BASIC Programmer's Toolkit m
is a machine language

program which is provided in a 2 Kilobyte ROM. When this is in-

stalled in your PET, and the Toolkit's program activated, your
PET's BASIC has ten new and very useful commands

AUTO Provides new line numbers when you are
entering BASIC program lines.

RENUMBER Renumbers your BASIC program, including
all GOTOs and GOSUBs.

DELETE Removes groups of BASIC program lines.

FIND Locates and displays the BASIC program'
lines that contain a specified string.

APPEND Adds a previously SAVEd program to the
one currently in your PET.

DUMP Displays the names and values of all

the variables used by your program
(excluding arrays).

HELP If your program stops due to an error,
HELP displays the offending line and shows
where the PET detected the error.

TRACE As a program runs, the last six line
numbers being executed are shown in the
upper right corner of the PET's screen.

STEP Executes one BASIC line and stops.
Pressing SHIFT executes the next line.
The line number is displayed in the
upper right corner of the screen.

OFF Turns TRACE or STEP off.

-1-

Getting Started

INSTALLATION

There are several versions of the Commodore PET -- models
2001-4, 2001-8, 2001-16, and 2001-32, and the PET's main circuit

board has changed in many ways. For our purposes, though, there

are only two kinds of PET, the "old" and the "new". The "old"

PET has a small keyboard and the tape unit on the front, and

on the right side there is a Memory Expansion Port. This port

consists of PC fingers to which a connector can be attached.

The "new" PET has a large keyboard, a separate tape unit which

connects to the tape socket in the rear of the PET, and the

Memory Expansion Port is made up of many pins that extend up-

wards from the main circuit board.

Please follow the instructions appropriate to your PET.

If you have some expansion memory, such as the Expandamem, con-

tact your dealer for installation information.

TOOLKIT INSTALLATION FOR "OLD" PETS

Your Programmer's Toolkit is mounted on a IV by 5" PC

card which has an edge connector for attaching to the Memory

Expansion Port. A short wire with a small connector extends

from the Toolkit PC card and attaches to the Cassette Port in

the back of the PET.

As shown in the diagram, plug the Toolkit onto the Memory

Expansion Port with the ICs on the PC card facing the PET, and

the wire extending to the back. Then plug the wire's connector

into the 2nd Cassette Port with the wire towards the corner of

the PET. The connector on the end of the wire is polarized so

that it cannot be plugged in upside down.

BE SURE THE PET'S POWER IS OFF WHEN YOU ATTACH OR

REMOVE YOUR TOOLKIT! !

!

-2-

Cassette Connector Note position of Wire

Figure 1. Installation for "OLD" PETS

TOOLKIT INSTALLATION FOR "NEW" PETS

For the new PET your Programmer's Toolkit consists only
of the ROM IC with the Toolkit's program inside. If you have
by some mischance got a Toolkit for the "Old" PET, check with
your dealer. In most cases the chip from the "Old" PET version
of the Toolkit cannot be used in the "New" PETs.

If you haven't opened your PET and looked inside, or if
you have never installed or removed a 24 pin IC, YOU ARE STRONGLY
ADVISED TO HAVE SOMEONE WHO HAS DONE THESE THINGS INSTALL THE
TOOLKIT FOR YOU!

Turn the power off and remove the power cord from the wall
socket. PLEASE DO THIS!

-3-

Unscrew the four screws on the bottom of the top half of

the PET (about 5" back from the front of the PET on each side).

Use the correct size phillips-head screwdriver to avoid damaging

the screws.

SLOWLY open the PET's case by lifting the front. Inside

will be several cables, some of which might be too short to

allow full opening of the PET. Find these cables and gently

disconnect them from the PET's main circuit board. When the

case is fully open, set the bar (on the left side) so that the

case will remain opened.

In the PET there is a row of 7 ROM sockets, with three

vacancies on the right side. As shown in the diagram, install

the Toolkit IC next to the PET's ROM ICs, with the notch and dot

as shown. BE SURE THE NOTCH AND DOT ARE PLACED CORRECTLY!

!

The Toolkit IC goes here

PET
ROM

PET
ROM

PET

ROM

PET
ROM

TOOL
KIT

ROM

The notch and the dot are here

Make SURE your Toolkit IC have

the notch and dot in the same

place! 1

EMPTY EMPTY

Figure 2. Installation for "NEW" PETS

-4-

SOME CAUTIONS ON INSTALLING ICs: 1) Touch the metal case
of the PET with your hand before installing the Toolkit IC.

This is to discharge any static electricity that might damage

the ICs. 2) Remove the IC from the black plastic carrier that
it has been shipped in. 3) CAREFULLY place the IC in the socket
and make sure all the pins are aligned with the socket's recep-

tacles. This may take a little cautious fiddling. 4) Press

SLOWLY and FIRMLY on the IC until it slides completely into the

socket. 5) Check for bent pins — especially for a pin that
has bent UNDER the Toolkit IC.

If you have bent any pins, remove the IC carefully using

a small blunt knife or a metal nail file. Using needlenosed
pliers, straighten the pins, and try installation again. You

can only do this once or twice before the pins break, so get it

right the first time!!!

After the IC is installed and checked, reconnect any

cables that were disconnected, close the PET, and replace the

four screws.

-5-

STARTUP & CHECKOUT

Make sure you have installed your Toolkit correctly, turn

on your PET, and then enter either

SYS 45056

or

SYS 11*4096

and press RETURN.

Your PET should reply with:

(C) 1979 PAICS

READY.

If this does not happen, TURN THE POWER OFF IMMEDIATELY

and check your installation. If you have an "Old" PET, check

that the 2nd Cassette connector is correctly placed and that

the Toolkit board is completely seated onto the printed circuit

board. "New" PET owners should check the position of their IC

and the direction of the notch and dot.

If the Toolkit message still does not appear after you

have checked your installation, contact your dealer for assistance.

After the Toolkit has been initialized with the SYS command,

the new commands are available for use. The remainder of this

manual describes the commands in detail.

-6-

The Commands
AUTO (First Line Number) , (Line Number Interval)

AUTO provides automatic line numbers when you are entering
BASIC program lines. The first line number will be displayed,
and when the BASIC line is entered via RETURN, the line number
interval is added and the new line number will be displayed.

To leave AUTO mode, just press RETURN. If you don't
provide a first line number or line number interval in the
command, AUTO assumes that you meant AUTO 100,10. AUTO will
remember the last line number and interval if a previous AUTO
was executed.

EXAMPLES:

Type in NEW to remove any programs in your PET, and then
type:

AUTO

The PET will respond with:

100 13 (The indicates the PET's cursor.)

The line number 100 will appear, and the cursor is in the right
position for entry of a BASIC line. You may enter as many lines
as you like, each terminated with RETURN. To leave AUTO mode,
press RETURN without entering a line.

AUTO
100 REM ONCE UPON A TIME
110 REM A FAIRY PRINCESS
120 REM MET MY PET COMPUTER.
130

s

You are now out of AUTO mode, and can do other things,
like RUN. AUTO line numbering can be resumed where you left off
just by typing AUTO again.

-7-

RUN

READY.

AUTO
130 B

AUTO always remembers the last line number it gave to you.

If you want to start with a new line number, you can pro-

vide it on the AUTO command:

AUTO 456
456 REM THEN SHE SMILED AT IT

466

To change the line number interval requires that you pro-

vide both the first line number and the interval:

AUTO ,15

7SYNTAX ERROR (It didn't work!)

READY.

AUTO 1000,15
1000 H

If you change only the first line number, AUTO remembers

the old interval

:

AUTO 2000
2000 REM AND ASKED 'WHO ARE YOU?'

2015

There are some situations in which AUTO will behave in

an unexpected manner. The section on GOTCHAS describes these

unusual cases.

-8-

RENUMBER (First Line Number) , (Line Number Interval)

RENUMBER renumbers the entire program currently in your

PET. RENUMBER will change all line numbers, including those

in IF - THEN, GOTO, GOSUB, 0N-G0T0, ON-GOSUB, RUN, and LIST.

References to non-existent line numbers are changed to 63999.

If no First Line Number or Line Number Interval are given,

RENUMBER assumes you meant RENUMBER 100,10.

EXAMPLES:

Enter a small program on your PET:

NEW
10 REM A RENUMBERISH EXAMPLE

20 GOTO 10

30 GOSUB 1000

40 IF K=2 THEN 500

1000 REM SAMPLE SUBROUTINE

1002 RETURN

RENUMBER

READY.
LIST
100 REM A RENUMBERISH EXAMPLE

110 GOTO 100

120 GOSUB 140

130 IF K=2 THEN 63999

140 REM SAMPLE SUBROUTINE
150 RETURN

The GOTO in Line 20 and the GOSUB in Line 30 have been changed

to reflect their new line numbers. Line 40 now jumps to 63999

since the program did not have a Line 500 in it

(Note: After you RENUMBER a program, you can then find all the

illegal line number references by using FIND 63999.)

To start the line numbers with 5000 instead of 100, just

use:

RENUMBER 5000

-9-

READY.

LIST

5000 REM A RENUMBERISH EXAMPLE

5010 GOTO 5000

(etc..)

If a different line number interval is desired, you must

provide the starting line number:

RENUMBER ,3

7SYNTAX ERROR

RENUMBER 300,3

READY.
LIST

300 REM A RENUMBERISH EXAMPLE

303 GOTO 300

(etc..)

If the last new line number in your program is going to

be larger than 63999, RENUMBER will tell you so:

RENUMBER 50000,10000

TOUT OF RANGE ERROR

No part of your program will have been renumbered if you get an

?0UT OF RANGE ERROR.

-10-

DELETE (Line Number) - (Line Number)

DELETE removes BASIC lines by specifying the line number
range in the same way that LIST specified the BASIC lines to
be displayed. For example, DELETE 100-200 will remove all
lines from 100 to 200. DELETE -100 will remove all lines from

to 100. DELETE 100- removes lines 100 to the end of the program.

EXAMPLES:

NEW

10 REM ONE LINE FOR THIS TIME
20 REM ANOTHER TO FILL THE BILL
30 REM AGAIN TO SATISFY THE YEN
40 REM OK, KEEP IT THIS WAY
50 REM FLY ALONG, GET A LITTLE HIGH
60 REM DON'T STUMBLE WHEN YOU MUMBLE
DELETE 30-45

READY.
LIST
10 REM ONE LINE FOR THIS TIME
20 REM ANOTHER TO FILL THE BILL
50 REM FLY ALONG, GET A LITTLE HIGH
60 REM DON'T STUMBLE WHEN YOU MUMBLE

DELETE* s line number range works like LIST — there doesn't have
to be a line at the numbers you specify.

DELETE won't work without some line numbers. This prevents
the loss of the entire program by mistake. Use NEW to delete
the entire program

DELETE

7SYNTAX ERROR

DELETE 50

READY.
LIST

10 REM ONE LINE FOR THIS TIME
20 REM ANOTHER TO FILL THE BILL
60 REM DON'T STUMBLE WHEN YOU MUMBLE.

-11-

APPEND (Program Name)

APPEND will load a previously saved program from cassette

tape and add it to the end of the program already in your PET's

memory. The APPEND command does not interleave or overwrite

the program in the PET.

The program name works in the same way that LOAD does.

You can provide either "name" or a string containing "name"

and the PET will search the tape until it finds a program

with the same initial characters as "name". You may also

specify cassette unit 1 or 2, exactly as with the LOAD command.

EXAMPLES:

Enter this small program and SAVE it:

200 REM THIS IS PROGRAM ONE (Be sure to NEW

210 REM TO SHOW HOW APPEND to remove any

220 REM WORKS ON YOUR PET other program.)

SAVE "FIRST PROGRAM"

Now remove this program and enter another one:

NEW

READY.

100 REM THIS IS ANOTHER PROGRAM

110 REM TO CONTINUE THE EXAMPLE.

Rewind your FIRST PROGRAM tape, and now add it via APPEND:

APPEND

PRESS PLAY ON TAPE #1

OK

SEARCHING
FOUND FIRST PROGRAM

APPENDING

The PET looks for a program just like LOAD does, and when the

program is found, APPENDING appears to let you know what's

going on.

-12-

LIST

100 REM THIS IS ANOTHER PROGRAM
120 REM TO CONTINUE THE EXAMPLE.
200 REM THIS IS PROGRAM ONE
210 REM TO SHOW HOW APPEND
220 REM WORKS ON YOUR PET.

You can repeat APPEND as often as you like until memory
is full. Another APPEND of FIRST PROGRAM results in:

LIST

100 REM THIS IS ANOTHER PROGRAM
110 REM TO CONTINUE THE EXAMPLE.
200 REM THIS IS PROGRAM ONE
210 REM TO SHOW HOW APPEND
220 REM WORKS ON YOUR PET.

200 REM THIS IS PROGRAM ONE
210 REM TO SHOW HOW APPEND
220 REM WORKS ON YOUR PET.

APPEND simply adds the program on tape to the end of
the current program. It does not insert or overwrite lines
within the current program.

If you have several routines stored on a tape, you can
select the ones you want by mentioning their names — just
like LOAD does. Suppose your tape contains:

APPLE
PEAR
APPLICATION
PEACH

APPEND "APPLE" will find the first program so will the use
of APPEND "APPV APPEND " PEAC" finds the program PEACH.

Since APPEND disregards line numbers, it is your respon-
sibility to make sure your APPENDed programs have increasing
line numbers. When BASIC executes IF - THEN or GOTO / GOSUB,
the line numbers are searched from the start of the program
until a line number equal to or larger than the jump's
number is found. This means that the program won't be able
to find out-of-order line numbers and you will see an ?UNDEF*D
STATEMENT ERROR.

-13-

FIND (BASIC code) , (Line Number) - (Line Number)

FIND "(string)" , (Line Number) - (Line Number)

FIND locates and displays all lines that contain a specified

fragment of BASIC code or a quoted string constant. The line

numbers select the lines to be searched in the same way that

LIST selects lines to be displayed on the screen. If the line

numbers are omitted, the entire program is searched.

If the item being searched for is not a string surrounded

by quotation marks, then the BASIC program itself is searched,

excluding any quoted strings. If the item being searched is

surrounded by quotes, then only quoted strings within the pro-

gram will be searched. For example, FIND A will find all

occurrences of the variable A such as A=3.1415, and FIND "A"

will find the character A inside strings such as PRINT "MOVE

AGAIN".

Note that BASIC programs are stored internally as "chunks"

of text called tokens , and not just as sequences of characters.

Each BASIC keyword, such as PRINT and THEN, is a separate token,

as are special characters such as = and +. When FIND looks at

BASIC text, tokens must match entirely in order for the search

to be successful. Thus in order to find, say, all PRINT state-

ments in a program, you must type FIND PRINT, and not just

FIND PRI. This often works to your advantage, however, because

you can also type FIND I to find all occurrences of the

variable I without also finding all PRINT statements. Of

course, you can also look for sequences of tokens, as in

FIND I = or FIND IF X=0.

When you use FIND in a large program, more than a screen

full of lines might be listed. Just as for LIST, you may press

RVS to slow the display, and STOP to stop it entirely.

-14-

EXAMPLES:

Here is a short program to use as an example:

10 PRINT" [clear screen][4 cursor down][4 cursor riqht]
THIS IS A SILLY"

20 PRINT" [4 cursor right] EXAMPLE FOR YOUR"
30 PRINT" [4 cursor right] SERIOUS CONSIDERATION."
40 FOR J=l TO 1000: NEXT J

50 INPUT" [5 cursor down] TRY IT AGAIN" ;A$
60 IF A$="YES" THEN 10

70 IF A$="N0" THEN END
80 PRINT" [clear screen] ":G0T0 40

Let's try a few BASIC code searches:

FIND IF

60 IF A$="YES" THEN 10

70 IF A$="N0" THEN END

READY.

Notice that FIND prints the entire line if the search is
successful. You can then use the screen editor to change the
lines as needed and reenter them.

The line numbers can be used to search portions of your
program. These work in exactly the same way that LIST does.

FIND A$,70-
70 IF A$="N0" THEN END

Remember to use quotes to search inside strings. For example:

FIND FOR
40 FOR J=l TO 1000: NEXT J

FIND "FOR"

20 PRINT" T4 cursor down] EXAMPLE FOR YOUR"

The FOR without quotes looked for tokens, and the search
ignored the r0R inside the quotes in line 20. The "FOR" with
quotes searcned in the quoted parts of the program only.

-15-

You can search for cursor movements and graphics charac-

ters by putting them inside quotation marks:

FIND "[cursor downXcursor right]"

10 PRINT" [clear screen][4 cursor down][4 cursor right]

THIS IS A SILLY"

Sometimes it is important to distinguish lines from other

similar lines. To do so, just FIND with a more complex program

segment; it need not be a single item.

FIND THEM 10

60 IF A$="YES" THEN 10

There are two lines with the keyword THEN, so using the

item THEN 10 made the search more precise. When making complex

items, be careful with blanks.

FIND THEN10

READY

Your item must match the blanks in the program lines as well

as the non-blank parts.

-16-

DUMP

DUMP displays all of the non-array variables present in

the PET's memory. The variables are displayed in the form:

(variable) = (value)

which permits the use of the screen editor to change their values.

When a program has many variables in it, the DUMP display

can be "frozen" with the SHIFT key. STOP will exit the DUMP

entirely.

The variables are displayed in the order that they were

created.

EXAMPLES:

Execute the following direct statements on your PET:

CLR
X=3 (This example ignores the

Y=2 PET's reply of READY)

A$="HELL0 OUT THERE"

C%=256

To see these variables, use DUMP:

DUMP
X=3
Y=2
A$="HELL0 OUT THERE

C%=256

Notice that the variables are displayed in the order that

these were created. DUMP will always display the current value

for each variable:

Y=123456987
Z=555666777
DUMP

X=3
Y=123456987

A$="HELL0 OUT THERE"

C«=256
Z=555666777

-17-

Try using the screen editor to change these values, like

making A$ become "SOMETHING ELSE NOW". When you DUMP again,

the values will be changed.

When a lot of variables are in the PET, the screen will

become filled and the first variables will scroll off the top

of the screen. For example:

CLR
A=1:B=2:C=3:D=4:E=5:F=6:G=7:H=8:I=9:J=10
K=11:L=12:M=13:N=14:0=15:P=16:Q=17:R=18
S=19:T=20:U=21:V=22:W=23:X=24:Y=25:Z=26
DUMP

W=23
X=24
Y=25
Z=26

READY.

Variables A - D scrolled off the top of the screen. Try DUMP

again, and press the SHIFT key a moment later. The display

will stop, and remain "frozen" as long as SHIFT remains de-

pressed. By releasing SHIFT for short moments you can look

at a DUMP in groups of 2 or 3 variables.

If you press STOP, the DUMP will be aborted:

DUMP
A=l
B=2 (Press STOP immediately after DUMP!

)

C=3
D=4

BREAK
READY

You can combine SHIFT and STOP to let the display move

to the variables that interest you. Use SHIFT to find the

variable, and then press STOP to terminate the DUMP.

The Programmer's Toolkit does not DUMP array variables

for two reasons. First, DUMPing arrays is much more difficult

to do in machine language, especially with 2 and 3 dimensional

arrays. Second, in most cases only a few array elements are

-18-

of interest when debugging a program, and the rest just clutter
up the screen. If you want to display an array, use FOR-NEXT
in a direct command:

FOR J=0 TO 20:PRINT A(J):NEXT

DUMP provides a very convenient way to display the value
of string variables that contain cursor-motion characters. Since
the string values are displayed in quotes, the cursor-motion
characters are printed as their reverse-graphic equivalents just
as they are entered in a program, and they may be easily changed
using the screen editor. In contrast, printing the value of a

string containing cursor-motion characters causes the cursor
motion to occur, which makes it difficult to see what the string
actually contains.

-19-

HELP

When a program is RUN and an error is encountered, the

PET will print an error message and the line number. The HELP

command will print the line on the screen and indicate where

the PET found an error by printing the "bad" spot in reversed

field.

HELP must be used immediately after an error, or else

the PET "forgets" the location of the error. (HELP will do

nothing if any other command is used first.)

If a program is interrupted via the STOP key, HELP will

display the line that includes the last successfully completed

statement. The reversed field indicator will be at the end of

the last completed statement.

EXAMPLES:

Here is a program with some bugs in it:

10 X=10/0

30 Z»12345678912345«

RUN

^DIVISION BY ZERO ERROR IN 10 (These examples ignore

HELP the PET's READY, message.)

10 X=10/0

The zero is in reverse field (indicated here with an underline)

which is where the PET decided something was wrong.

GOTO 20

?SYNTAX ERROR IN 20

HELP
20 Y=((((((15)))))D)

If you carefully count the parentheses, the reversed field

indicator is on the 6th right parenthesis. Since there were 6

left parentheses going in, the 7th right parenthesis should have

made the error. In most cases, HELP puts the indicator at the

character before the suspected error.

-20-

Try GOTO 30 and see where the PET gives up.

Lines displayed by HELP are easily changed aad reentered
by using the screen editor as usual.

The PET easily forgets where errors were because that
information is kept in temporary storage. If any command at
all is done before HELP, the HELP line is forgotten.

RUN

7DIVISI0N BY ZERO ERROR IN 10

PRINT X

HELP

READY

The PRINT X made the PET forget the location of the error, and
HELP isn

f

t much help now.

-21-

TRACE

The TRACE command turns on a "tracer" which will display

the currently executed line number when a program is RUN. The

last six line numbers are displayed in the upper right corner

of the screen in a reverse-field "window". As lines are

executed, their numbers scroll up the "window" with the most

recently executed line's number at the bottom.

Pressing SHIFT when a program is running will slow the

TRACE down to about 2 lines per second. Even without the SHIFT

key, though, TRACE slows- the running of a program considerably.

EXAMPLES:

Enter this program into your PET:

NEW
10 PRINT"[clear screen]";

20 X=l
30 PRINT"[home cursor]"X

40 X=X+1
50 GOTO 30

Now trace it:

TRACE

READY.
RUN

The screen will clear, and a reverse-field "window" appears

in the upper right corner. In the upper left, a number is

shown which counts upward. A typical display might look like

this:

13

-22-

(On the PET, the numbers starting with # will be in reverse-
field -- black on white.)

Press the SHIFT key and notice how the display slows down.
Now about 2 lines per second appear in the "window".

To stop the program, press the STOP key. STOP will work
with SHIFT depressed also.

Try pressing RETURN when you have stopped this program
with TRACE. You will get a 7SYNTAX ERROR. Whenever the RETURN
key is pressed, the PET scans the entire line — and when you
stopped this program, the cursor was in the 5th line on the
screen. On the right, the "window" is still there, and the
PET took the #(line number) as your entry.

If you leave^TRACE with the cursor in the top 6 lines of
the screen, press [cursor down] or [clear screen] to remove
the "window" first.

Let's try another program:

NEW
10 PRINT'Thome cursor]"X:X=X+l:G0T0 10

RUN

When this is TRACEd, only line 10 appears in the window — and
only on the bottom line. The TRACE does not fill the window
with the line number if the program is in a loop on one line.
This was done intentionally since many programs have "GET" loops
like this one:

222 GET A$: IF A$="" THEN 222

TRACE will let you see what happened before the loop by not
repeating the 222 in the window.

-23-

STEP

The STEP command activates the "tracer" and then executes

one BASIC line and stops. (The line number is displayed in the

"window" in the upper right corner of the PET's screen.) To

execute the next line, simply press SHIFT.

If you hold SHIFT down, the program will continue to

execute lines until SHIFT is not depressed. To exit a program,

press the STOP key; this will work regardless of whether the

SHIFT key is pressed.

After RUN, SHIFT must be pressed to execute the first

line. If a loop is included in a program line, like:

10 GOTO 10

the line will be executed indefinitely. Press STOP to leave

the program.

EXAMPLES:

Here is a small program to demonstrate STEP:

NEW
10 PRINT'TIRST THING"

20 PRINT"SEC0ND ITEM"

30 PRINT"THIRD OBJECT"

40 GOTO 10

STEP

READY.

RUN

At this point, the "window" will appear in the upper right

corner of the PET's screen with line #10 at the bottom. Note

that line #10 has not been executed yet.

Tap the SHIFT key briefly. FIRST THING will appear, and

the "window" now contains #10 and #20. Each time you press

SHIFT, STEP will execute one BASIC line and display the line

number of the next statement that will be executed.

Hold the SHIFT key down. Now the "window" will scroll

the line numbers in the same way that TRACE does, and the screen

will show:

-24-

FIRST THING
SECOND ITEM
THIRD OBJECT
FIRST THING

#20
#30
#40
#10
#20

(etc)

If you press STOP, the program will end, and this works

with or without SHIFT depressed. If the cursor is at the

bottom of the screen when STOP is pressed, only the last three

lines of the "window" will be visible because the PET has to

scroll the screen to display the BREAK IN ### and READY, messages.

STEP works like TRACE if a one-line loop is encountered;

NEW
10 PRINT"[home cursor] "X:X=X+1:G0T010

RUN

STEP is waiting for you to press SHIFT. Press SHIFT and release

it.

The "window" remains the same, with only the #10 shown.

However, an increasing number appears near the upper left

corner as the increasing X is displayed. When STEP sees a

one-line loop, the loop is executed until STOP is pressed.

The "window" behaves like TRACE, and does not fill up with

repetitions of the same line number.

-25-

OFF

OFF turns off the "tracer" which TRACE and STEP activate.
After OFF, a running program will no longer display the "window"
or wait for the SHIFT key before executing the next line.

EXAMPLES:

Take the example program for STEP and RUN it with STEP
turned on. Press the STOP key, and then type OFF.

Now RUN the program again the "window" is gone, and
the program RUNs as usual

.

-26-

Gotchas!

Your Programmer's Toolkit has been designed to give you
the most powerful and effective extensions to your PET's BASIC
for a reasonable price. The Toolkit takes advantage of the

PET's ROM subroutines wherever possible, and as a result, the

PET's "way of doing things" is reflected in the Toolkit.

By now, you know that a computer does what it is told to

do, and that is not always what you meant for it to do. There
are many situations where the Toolkit commands will act in a

"strange" way — that is, the Toolkit's action will not.be what
you expected.

These situations have been called "Gotchas!", and this

part describes the Gotchas! that we know about. Take the time

to try these situations out, and then the Toolkit won't have
nasty surprises for you in the middle of an important program.

INSTALLATION

The old model PETs have the Toolkit installed on the

Memory Expansion Port on the right side of the PET. A short
wire and connector are provided which supplies +5 volt power
from the 2nd Cassette Port. Be sure both connectors are in-

stalled properly.

The new PET's Toolkits are installed on one of the PET's

ROM sockets on the Main Logic Board. Be sure that you are

using the right socket and that Pin 1 of your Toolkit is in

Pin 1 of the socket.

PETs with expansion memories that use the Memory Expansion
Port will require differing arrangements. Expandamem users need
a small ROM board (available from your dealer) which fits on the
Expandamem' s expansion sockets.

Contact your dealer if you have any questions concerning
the installation of your Toolkit.

-27-

MEMORY

The Programmer's Toolkit requires ROM space for the

machine language program, and a small amount of RAM to remember

variable date. The memory space used is:

$ 03E0 - $ 03FF for RAM

$ B000 - $ B7FF for ROM

The RAM is in the upper part of the 2nd Cassette Buffer,

and with the exception of APPEND, use of the 2nd Cassette in

BASIC programs with the Toolkit may have unpredictable results.

The ROM is placed above the Screen RAM and will not inter-

fere with most PET users, including those with memory expansion

RAM. If you have a Computhink Disk, a conflict exists. The PC

board which comes with the "old PET" version of the Toolkit has

an extra socket which can be used for any B2716-compatible ROM

or PROM; it is wired for addresses starting at $9000.

Initialization

The SYS 45056 (or SYS11M096) command is necessary to

initialize the Toolkit and activate its commands. You need to

do it again only if the PET has been turned off, or reset with

a switch, or if a machine language routine has been used to

reset the PET software.

SOME GENERAL FEATURES

Immediate Mode Only

Your Tool kit
1

s commands will work as direct statements

only. If you include a Toolkit command in a BASIC program,

you will get a ?SYNTAX ERROR.

Toolkit Commands Only

You must make a Toolkit command the only item in a direct

statement. You will get a 7SYNTAX ERROR if you try to put more

than one command on a line, or if you try to mix Toolkit and

BASIC statements on the same line.

-28-

The Toolkit will either ignore extra characters, or, in

most cases, give you a 7SYNTAX ERROR. If you do one thing at
a time with your Toolkit, there won't be any trouble.

PET Abbreviations Work

As most of you know, the PET will accept shortened versions
of the BASIC keywords if the last character is shifted. For
example, L[shift-0] will perform a LOAD, VCshift-E] will do

a VERIFY, and so on.

Your Toolkit will accept abbreviated commands as well.

Here is a list of Toolkit abbreviations. The underlined letter
is shifted:

AU AUTO
RE RENUMBER
DE DELETE
FI FIND
AP APPEND
DU DUMP
HE HELP

TR TRACE
ST STEP

OF OFF

Other partial abbreviations will work -- for example, RE 9

REN_, and RENUM, will all function correctly.

AUTO

When using AUTO, you often want to use the screen editor
on previously entered lines and then return to AUTO. AUTO will

remember the next line number if the line number of the edited
line is less than the next line number that AUTO is to provide.

If a larger line number is edited, the AUTO's line number
is changed to reflect this. Here is an example to get you started;
there are many combinations try several to see how this works.

AUTO 100,10
100 REM LINE ONE

110 REM LINE TWO
120

-29-

Now use the screen editor to change Line 100 to 200 and press

RETURN. AUTO now provides thie new line number, 210, where 110

used to be.

When leaving AUTO after entering lines in the middle of

a program, be aware that pressing RETURN after a line number

results in the deletion of a line! Use the DEL key to remove

the line number, and then press RETURN on the blank line if

you are in danger of losing a line.

AUTO 100,0 and AUTO 0,0 are acceptable to the Toolkit,

though rather useless.

If the next line that AUTO is to provide is larger than

63999, you will get an ?0UT OF RANGE ERROR, and the last line

you entered will be missing. For example,

AUTO 50000,10000
50000 REM ONE
60000 REM TWO
?0UT OF RANGE ERROR

READY.
LIST

50000 REM ONE
READY.

RENUMBER

RENUMBER always renumbers the entire program in memory.

If a line number is unreferenced, e.g., there is a GOTO xxx and

the program does not have line xxx, the line number is changed

to 63999. Use FIND 63999 to locate these references to missing

lines.

If the largest line number after RENUMBER is to be more

than 63999, RENUMBER gives an ?0UT OF RANGE ERROR and won't

renumber the program.

RENUMBER 200,0 and RENUMBER 0,0 will work — and leave

you with a mess!

When RENUMBER converts small line numbers to large ones,

and vice versa (e.g., 25 to 1000), the program has to be moved

in the PET memory and the line linkage pointers changed. A

-30-

large program that is drastically renumbered will take some time
to do. Programs that are extremely long (i.e., under 100 bytes
free) may get an ?0UT OF MEMORY ERROR and not be renumbered
correctly. One cure is to start with a fresh copy of the pro-
gram and RENUMBER 1,1 to keep the line numbers short. But you
probably won't have enough space for variables when you try to
run the program anyway!

Numbers included in REM and in quoted strings won't be
changed by RENUMBER. Be aware of this if you have hidden a
statement like

REM GOTO 500 - CONDITIONAL FOR 16K PET

or similar nasty deeds.

Programs that modify themselves by printing statements
on the screen and then stuffing the input buffer with RETURNS
will probably not work correctly after RENUMBERing.

If you have APPENDed a program with out-of-order line
numbers, RENUMBER can be used to make the code accessible by
the program. Any jumps (GOTO, IF-THEN, etc.) will now be
pointed to incorrect line numbers, so beware!

DELETE

DELETE without any line numbers, or DELETE -, will give
a 7SYNTAX ERROR. This is intended to prevent loss of your
program through an accidental DELETE. (To remove a program,
use the NEW command.)

If DELETE is given out-of-order line numbers, it will give
a 7SYNTAX ERROR if a line exists in the given (but backwards)
range. If there are no lines, DELETE does nothing.

FIND

The line number range for FIND operates like LIST. FIND
without a line number range looks at the entire program. If
line numbers are given out-of-order, FIND behaves like DELETE.

-31-

If the search item is not in quote marks, it is tokenized,

and the search proceeds througti the unquoted parts of the BASIC

program only. If the search item is surrounded by quotes, only

the quoted parts of the BASIC program are searched.

Remember that FIND without a quoted string looks for

matching text that has been broken into tokens. Since all of

the BASIC program text has been tokenized, FIND PRINT will

look for and find all PRINT statements. However, REM state-

ments are not tokenized; PRINT inside a REM is stored as a

sequence of five characters instead of a single token. The

result is that FIND PRINT will not find a statement like

REM PRINT RESULTS, because it is looking only for the token

PRINT. One way out of this difficulty is to search only for

partial keywords in REM statements; as in: FIND RINT.

FIND F00 "BAZ" will tokenize FOO and ignore "BAZ\ A

similar fate awaits FIND "FOO" BAZ, with the search being for

"FOO". FIND searches only the part of the line after the line

number, and will not find the line number itself.

APPEND

APPEND works for cassettes #1 and #2 only. APPEND will

not recognize IEEE device numbers, and will not work for disk.

If the program to be appended would exceed the available

memory, APPEND will abort. The program size is on the tape

header, so partially appended programs will not result.

Tapes are searched for program names in the same way that

LOAD does.

DUMP

DUMP will show the variables whenever BASIC still has

them. Note that editing any. line in the program causes all the

variables to be discarded.

HELP

HELP is very transient, and must be the first command

after stopping a program, or nothing will be displayed.

-32-

IF YOU DISCOVER A NEW GOTCHA

!

PAICs would like to know about any bugs, etc. concerning

the Programmer's Toolkit. Please write us with the required

details to duplicate the bug. However, please don't phone.

Though phone conversations are nice for the psyche, they take

time away from making new and neater products, and, phone calls

tend to be forgotten when it is time to fix or improve a product.

So, please write instead.

-34-

The reverse field marker is often one character before

the offending part.

When a program is stopped by STOP, or ends by itself,

HELP will display the last executed line. The reverse field

marker will be at the end of the last completed statement.

The reverse field marker will reverse the entire token in

HELP.

If the first character in a line is in error, HELP will

not display a reverse field marker.

In some cases, the source of the error might not be where

the marker is; the marker is what the PET was looking at when

the error was discovered. This is especially true in arithmetic

expressions and with READ or INPUT or GET.

TRACE

If the cursor is in the upper six lines of the screen

after TRACE has been used, any direct command will include the

characters in the "window" when you press RETURN — which won't

work very well. Either clear the screen, or move the cursor

below the window on the screen, and then enter your commands.

Shift-RETURN will move the cursor down nicely.

STEP

Same as TRACE.

OFF

No known GOTCHAS!

CAUTION FOR HACKERS

The Toolkit requires that the PET BASIC program be intact

and correct regarding pointers, line numbers, etc. If you have

mangled a program, the Toolkit might go bonkers.

-33-

sag

is

«J {Ho

fieg

10

si

«

8
UJ

8
UJ

"llJ

fags

