E
i

e

N onidla ;«M e b st MO\?W

The ten commi«

é«-fnd.s' will

they change your life?

There’s no need to step through fire to bring the tablets down from Sinai.

John James takes a sceptical look at ten (or is it nine?) new add-on

machine-code subroutines for the PET, holds them nervously in the palm of |

7

his hand, and concludes they may change your life, too.

WHAT EXACTLY is the Basic Program-
mer’s Toolkit? Well, answering
physically, it’ll depend on whether you
have an ‘old’ or ‘new’ PET. And how do
you tell? If you have one ©f the small
keyboards, then for our purposes you
have an ‘old’ PET; a big keyboard (and
therefore a separate tape cassette unit),
and you have a ‘new’ PET.

The only effect this has on the Toolkit
is on the type of Toolkit you get.

For an ‘old’ PET, you get a small
printed circuit board, with a chip and
some other bits mounted on it, and a
connector loose-wired to its edge. The
board has another connector mounted
directly on it, which lets it be plugged
straight into the memory expansion board
port on the right-hand side of your PET.
The loose-wired connector is then plugged
into the second cassette port, just round
the corner, at the back.

For a ‘new’ PET, you simply get a chip.
This you take in nervous fingers (try
holding a chip that cost over sixty quid,
and see if you aren’t nervous), to plug
straight into an empty socket on the main
board inside your PET.

Obviously, installation on an old’ PET
couldn’t be easier, so there’s no point in
covering the question ‘can you do it
simply?’. Fitting a ‘new’ PET sounds a bit
more tricky, so how hard is it?

Nothing could be more straight-
forward, thanks to one of the best
instruction books I've seen in many a day.
If you follow the book, you really can’t go
wrong. It’s worth saying here, for the
knowledgeable, that the book also covers
all the things you’d expect, like avoiding
static discharge, bent pins, and so on. In
other words, fitting should be no problem
at all — except if you've had expansion
memory fitted to -your PET. Here, the
book recommends that you ‘contact your
dealer for installation information’.

Now there is room for criticism here,
since you won’t be reading the book until
after you’ve got your Toolkit. Have you
ever bought a super-gadget-gizmo,
hurried home in high excitement, torn the
wrapper off, and then found you hadn’t
got the necessary battery because nobody
said you'd need one? Familiar with the
frustration this causes?

Then be warned. If you have got
expansion memory, tell your dealer at the

64

time of buying, and make sure that he can
“advise you.

Once ' you’ve fitted the Basic
Programmer’s Toolkit, what will it do?
Here, I’d like to come back briefly to the
instruction book that comes with the
Toolkit. It’s 34 pages long, nicely printed,
totally explicit, clear as crystal, loaded
with example programs, and best of all,
originally written by Gregory Yob.

The cognoscenti will have twitched at
that magic name; others should know that
Gregory has not only been in personal
computing since Heaven knows when —
to many, he is personal computing.

This means that you’ll get the best out
of the Toolkit right from the word ‘go’,
and the best can meant quite a lot. Yet
there is room for another criticism. The
Toolkit is widely advertised as adding ‘10
powerful new commands to PET’s Basic’,
which I think is not entirely fair.

In fact, you get nine new commands
(we’ll have a look at how powerful they
are in a moment); the tenth isn’t really a
command, in my view, since it simply
switches off a couple of the other nine.

So what are these nine powerful
commands? The best way of answering
that is to look at them one by one, but
before we do that, let’s return to that
magic moment just after you’ve fitted
Toolkit, and you're about to start trying it
out.

You have to turn it on, and this you do
very simply by entering SYS 45056. PET
should respond immediately by displaying
(C) 1979 PAICS.

From that point on, all nine active
commands are available until you switch
PET off. You get them back, after

powering down, by entering the SYS
instruction again,

Reviewing the nine commands gives me |

a choice:
alphabetically, or in order of persona!
favouritism, and I'm going to opt for the
latter. .

Let’s start with RENUMBER.

I can tell you about them |

Now this one is really good (not that the |
others aren’t, but | said I'd start with my |
favourite!). The major point to make |
immediately is that RENUMBER is fully !

professional.

In other words,
previous methods, using add-on
subroutines, which required you to go
right through the program, looking for
line numbers, to make sure each one had
enough space before it for whatever it
might become when renumbered.

The Toolkit RENUMBER expands or |

contracts line numbers, and closes every-

thing else on the program line up tight to |
turn |

the new number, whatever it might
out to be.

You activate RENUMBER by typing
the word and entering it. If you do this,
Toolkit assumes you want to start at Line
100 and go in steps of 10.

If you want to start at any other line
number, and/or go in other increments,

forget about those |

you simply say so and it happens — and |

pretty fast too.
together,

[linked four programs |
all about 6K long, and re- |

numbered the lot in less than 15 seconds. |
Of course, it depends on the number of |
renumbers (if you get my meaning), but |

you shouldn’t have any complaints about
the time you hang about.
There are two other
RENUMBER.
First, if renumbering will take your line
numbers over the maximum permitted,

goodies in |

the routine aborts, and no renumbering |
takes place. You'll like that if you've ever |

‘crashed’ with other methods!
Second, if the routine comes across a

line number that doesn’t exist later in the |
program (as in GOTO X, and X isn’t |

there, for instance)
deliberately renumbers that to 63999.

This ties in nicely with my next most-

liked command, FIND.

then it quite |

FIND locates all lines that contain |

absolutely anything you like to specify.
It’s important to be clear about this,
because the advertising for Toolkit isn’'t.

The advertisements say that FIND locates !

PRACTICAL COMPUTING February 1950

lines ‘containing a desired character
string’. That’s quite true, but it’s
misleading, in that you might well think
that all you can ask FIND to do is look for
strings.

Not so. FIND will do much more than
that (which certainly means the advertise-
ments err on the right side!). FIND will
find anything. If you want to know which
lines have the variable ‘G’ in them, and
you enter FING G, then every line with
the variable in it will be found and
displayed.

Note that FIND G won’t find GOTO or
GOSUB, just because they have a ‘G’ in
them, which saves a lot of confusion. To
find GOTO statements, you need to enter
FIND GOTO, and the same holds good
for any other Basic statement. If, on the
other hand, you enter FIND ‘“G”’, then
every quoted string that contains the letter
G, whether it’s on its own or contained in
a word, will be found and displayed,
which is not only useful, but fun.

Now you’ll see the point of renumber-
ing non-existent lines to 63999. All you
need to do to find them is enter FIND
63999, and presto! there they all are,
displayed for your pleasure. And, what’s
more, you can then go right ahead and
edit them on screen, which helps resolve
little local difficulties quite quickly.

Keeps on adding

I think my third favourite must be
APPEND. This one adds program to
program to program, for just as long as
you have memory available to keep doing
it. You only have to keep one thing in
mind: APPEND does not replace
program lines in memory with new
similarly-numbered lines from the
material you’re appending, not does it
interleave program lines. Quite simply, it
does exactly what it says: it keeps on
adding program lines to the end of what-
ever might already be in memory.

It does this from tape only, however,
and will not append from disk or other
devices. I don’t see this as a very great
disadvantage, but perhaps some people
will.

All I can say is that I’ve already found
the command incredibly useful, in only a
few days of playing about. If [have a
favourite subroutine or whatever on disk,
I don’t really feel it’s a great hardship to
off-load on to cassette so that | can use
the APPEND facility.

My fourth favourite? Well we’re
getting to the photo-finish stage now, but
maybe a whisker or so in front is HELP.
You use this when that lovely point
comes, as you finish typing the world’s
finest program, which of course is totally
error-free, and run it, when everything
judders to a standstill halfway through,
with PET beadily blinking ERROR at
you.

You look at the line allegedly in error,
and it seems perfect, just like the rest of
the program.

Fret not; if you'd like to know where

66

that little but is lurking, enter HELP. Up
comes the line again, but this time a bit of
it will be in reverse field. This, says the
manual, is where the error is. Well, [
found this wasn’t strictly true, but it was
close enough to make no difference.
Sometimes the reverse field is to the left or
right of the error, sometimes a character
or so distant, but it’s never far away.
After all, if the error was something
missing, it’d be hard to put a reverse field
on what wasn’t there!

Mounting panic

The fifth and sixth commands are
similar: TRACE and STEP. Both put a
little reverse-field window on the top
right-hand corner of the screen, which
displays up to six line numbers. With
TRACE, the program runs steadily, and
the line numbers being executed whip up
the litttle window at a high rate of knots.

The manual says that TRACE slows the
running of a program considerably, and
that pressing the shift key slows it still
more, to around two lines per second.
Even at that, though, it’s still moving fast,
and 1 haven’t so far found TRACE
overpoweringly useful. The only effect it’s
had on me to date is to induce a mounting
panic as ! tried to keep up with what was
happening. These are early days, though.

STEP seems rather more sensible, but
to be harsh, it’s merely an extension of
TRACE, in that it displays one line
number only, and that’s the one that’s
just been executed.

For debugging, my vofe goes to STEP,
however. Not that my programs ever have
bugs in them, of course, but I can always
offer my help to those less fortunate!

One smart thing about both TRACE
and STEP: the reverse-field window
overrides any screen display, which avoids
peering at line numbers through over-
written screen characters. This is a dis-
advantage too though, because it’s
possible (but, to be fair, odds-on unlikely)
that a bug you're trying to spot will be
right under that little window!

DUMP comes next, and I have a feeling
that I’'m going to love it more and more.
You use it most often at the end of a pro-
gram, and entering it causes every single
variable (excepting arrays) to be printed,
with the value each has at that time.

Now I’m a messy programmer: in other
words, [like to program straight on to the
screen. Not for me the clean, aseptic
approach of writing everything out
beforehand.

Thus I often get to a point where I’m
uncertain which variables I’ve used, which
[haven’t, and what values I've given
those that I have put in. I’m sure that you,
gentle reader, never do this, but just in
case there’s someone out there who does,
DUMP could be exactly what he or she
needs.

Family resemblance

The final two commands — AUTO and
DELETE — have a family resemblance

also. Their names explain virtually all.
AUTO provides automatic line number-
ing, in whatever increments your heart
desires, as you type furiously through
your program-entering process. DELETE
wipes whole blocks of lines out, between
whatever numbers you specify.

That, at least must save wear and tear
on the Return key but, ironically enough,
the other commands available in Toolkit
tend to lessen the usefulness of DELETE
for me. I’d have loved it in those not-so-
far-off days when 1 -used subroutines
tacked temporarily on to the front or rear
of the main program.

And there it is: the Basic Programmer’s
Toolkit, with 2K of ROM firmware,
consisting of a collection of machine

language routines, all on one chip, adding |
nine (or 10, if you want to be finicky) new |

commands to your PET,
Is it worth £60? I would say yes.

Petsoft tell us:

© They are writing a British annexe to the |

Minimax manual with the intention of
‘making a number of contributions aimed
at the naive user.’

® This business software, available for |

the PET on Computhink mini-floppies,
has been adapted and integrated for the
Minimax. This means that programs from

the suite can be run without having to |

‘bust through a series of complicated disc-
to-disc steps.’

® Software titles which will be available |

early in the new. year are Sales Account-
ing and Invoicing, Purchase Accounting,
Stock Control,
before the new financial year, Payroll.
Petsoft are also publishing a range of 50

utilities, languages and simple business |

Word Processing and |

routines. During the course of the year |

Petsoft will release
packages supporting animated graphics,
3D plotting and a ‘‘small-talk”
package.

The CPU, in additiion to recognising all
standard 6502 instructions, will also
support 64 user programmable op codes.

some graphics |

type |

These can be used for Pascal and Forth |

operations.

CompuThink themselves have Pascal,
compiled Basic and Fortran under
development for release early in 1980.

Conclusions

@ It's added a lot more fun to my pro-
gramming

© It’s made bugs much easier to find

® It’s encouraged me to be a little more
adventurous in trying out different

methods, because I know, if they're not
right, I'll be able to locate them and
change them

© Maybe best of all, it has let me go back |

to half-finished programs from long ugo,
and tackle them again,
o Toolkit also makes conversion of old-

ROM programs very much more simple. |

© If you're any sort of ‘hacker’, what |

are you waiting for?

PRACTICAL COMPUTING February 1980

